Бизнес. Финансы. Недвижимость. Страхование. Услуги

Распределение Вейбулла. Непрерывные распределения в MS EXCEL

Это распределение чаще всего используется для исследования интенсивности отказов для периодов приработки и старения.

Надежность наиболее распространенных элементов электрических сетей, таких, как силовые трансформаторы, КЛ, в значительной степени определяется надежностью работы изоляции, «прочность» которой изменяется в течение эксплуатации. Прочность изоляции в зависимости от условий эксплуатации и вида изделия определяется механической прочностью, эластичностью, исключающей возможности образования остаточных деформаций, трещин, расслоений под воздействием механических нагрузок, т. е. неоднородностей.

Однородность и монолитность структуры изоляции и ее высокая теплопроводность исключают возникновение повышенных местных нагревов, неизбежно приводящих к увеличению степени неоднородности электрической прочности. Разрушение изоляции при функционировании элемента происходит в основном в результате нагревания токами нагрузок и температурных воздействий внешней среды. Механические нагрузки (вибрации, деформации, удары и др.) также приводят к разрушению изоляции.

Среди перечисленных факторов, определяющих срок службы изоляции указанных элементов электрических сетей, одним из основных факторов, является тепловое старение. На основании экспериментальных исследований было получено известное «восьмиградусное» правило, согласно которому повышение температуры изоляции, выполненной на органической основе, на каждые восемь градусов в среднем вдвое сокращается срок службы изоляции. В настоящее время в зависимости от класса применяемой изоляции используются шести- , восьми- , десяти- и двенадцатиградусное правила.

Срок службы изоляции в зависимости от температуры нагревания:

T и = А е-γς, (5.43)

где А - срок службы изоляции при ς = 0- некоторая условная величина;

γ- коэффициент, характеризующий степень старения изоляции в зависимости от класса;

ς - температура перегрева изоляции.

Другим важным фактором, вызывающим интенсивное старение изоляции, является обусловленная электрическими процессами при резких изменениях тока, например при резкопеременной нагрузке силового трансформатора, набросах и сбросах нагрузки, сквозных токах КЗ. Механические характеристики прочности изоляции также зависят от температуры. Предел механической прочности изоляции быстро снижается по мере ее нагревания, но в то же время она становится более эластичной.

При воздействии переменных неблагоприятных условий неоднородности материала увеличиваются, например микротрещина распространяется в глубь изоляции и при случайном повышении напряжения может вызвать пробой изоляции. Причиной отказа может быть даже небольшая неоднородность материала.

Число неблагоприятных воздействий (тепловых или электромеханических), вызывающих пробой изоляции, есть функция, убывающая в зависимости от размеров неоднородности. Это число минимально для наибольшей по размерам неоднородности (трещины, расслоения и др.). Т.о., число неблагоприятных воздействий, или срок службы изоляции, должно подчиняться закону распределения минимального числа из числа независимых СВ - чисел неблагоприятных воздействий, соответствующих различным по размерам неоднородностям, т. е. если Ти - время безотказной работы всей изоляции, а Тиi - время безотказной работы i-го участка (i = 1, 2,..., n), то:

T и = min (T и1,T и2,…,T иn). (5.44)

Таким образом, для определения закона распределения времени безотказной работы такого объекта, как изоляция элемента электрической сети, необходимо найти вероятность распределения минимальных времен безотказной работы совокупности всех участков. Причем наибольший интерес представляет случай, когда законы распределения времени безотказной работы отдельных участков имеют произвольный характер, но вид законов распределения одинаков, т. е. резковыраженных отличающихся участков нет.

В смысле надежности участки такой системы соответствуют последовательному соединению. Поэтому функция распределения времени безотказной работы такой системы:

q c (t) = 1 – n. (5.45)

Далее математическими преобразованиями выводится формула, при которой основным параметром является «порог чувствительности», т. е. элемент гарантированно не откажет в интервале времени (0, t0) (в частном случае t0 = 0). Если распределение не имеет порога чувствительности t0, то закон распределения называется распределением Вейбулла:

где с > 0 – некоторый постоянный коэффициент;

α – параметра распределения.

Этот закон распределения довольно часто используется при аппроксимации распределения времени безотказной работы систем с конечным числом последовательно (в смысле надежности) соединенных элементов (длинные КЛ со значительным числом муфт и др.).

Плотность распределения:

(5.47)

При α = 1 плотность распределения превращается в обычную показательную функцию (см. рисунок 5.12).

Рисунок 5.12 - Дифференциальная функция распределения времени безотказной работы изоляции по закону

Вейбулла

Рисунок 5.13 - Интенсивность отказов при

распределении по закону Вейбулла

Интенсивность отказов при распределении плотности по закону Вейбулла (см. рисунок 5.13):

λ(t) = αctα-1. (5.48)

Интенсивность отказов для этого закона в зависимости от параметра распределения может расти, оставаться постоянной (показательный закон) и уменьшаться.

Как видно из рисунков 5.12 и 5.13 экспоненциальный закон распределения является частным случаем закона Вейбулла при α = 1 (λ = const). При α = 2 функция распределения времени безотказной работы совпадет с законом Рэлея, при α »1 достаточно хорошо аппроксимируется нормальным законом распределения в окрестности среднего времени безотказной работы.

При соответствующем подборе параметра α можно с помощью закона Вейбулла описывать надежность и стареющих элементов (период старения и износа), у которых λ(t) возрастает, и надежность элементов, имеющих скрытые дефекты (период приработки), у которых λ(t) убывает с течением времени.

Математическое ожидание (среднее время) безотказной работы и дисперсия при распределении по закону Вейбулла:

T и.ср = Г(1+1/α) c-1/α, (5.49)

Д(Tи ) = c-2/α [Г(1+2/α) – Г2(1+1/α)]. (5.50)

где Г(х ) - гамма-функция .

Эксплуатация изделий по ресурсу целесообразна только в том случае, если надежность изделия зависит от его наработки. Такие изделия составляют всего 5% от всех установленных на самолете. Поэтому, поскольку анализ MSG-3 позволяет определить, КАКИЕ работы по ТО должны быть включены в первоначальный перечень важных объектов MSI, и КАК они должны выполняться, необходим инструмент, который поможет ответить на эти вопросы.

После того как будет накоплен достаточный опыт, первоначальные интервалы могут быть изменены как для конкретного оператора, так и для всех эксплуатантов через ревизию отчета MRB. Для того чтобы обосновать изменение интервала, необходимы инструменты.

Таким инструментом является анализ надежности. Наиболее эффективный и широко используемый метод - анализ надежности по распределению Вейбулла.

Распределение Вейбулла, названное в честь шведского инженера Валодди Вейбулла (Waloddi Weibull, 1887-1979 гг.), введшего это распределение в практику анализа результатов усталостных испытаний, широко используется для исследования надежности элементов технических систем. В России это распределение связывают с именем известного русского математика Бориса Владимировича Гнеденко (1912-1995 гг.), получившего его в качестве предельного при изучении максимального из результатов испытаний. технический обслуживание авиационный ремонт

Опыт эксплуатации технических систем и их элементов показывает, что для них характерны три вида зависимостей интенсивности отказов л от времени t, соответствующих трем периодам жизненного цикла этих устройств (рис. 18.).

Рис. 18.

Указанные три вида зависимостей интенсивности отказов от времени можно получить, используя для вероятностного описания случайной наработки до отказа распределение Вейбулла - Гнеденко. Согласно этому распределению зависимость для плотности вероятности момента отказа f (t) имеет вид:

где c - параметр формы распределения, с > 0;

b - параметр масштаба распределения, b > 0;

и - параметр положения распределения, и < t.

Интенсивность отказов л(t), подчиняющихся распределению Вейбулла - Гнеденко, определяется выражением:

При параметре формы распределения c < 1 интенсивность отказов л(t) монотонно убывает (период приработки), при с = 1 интенсивность отказов постоянна: л(t) = const (период нормальной работы), а при с > 1 - монотонно возрастает (период износа). Следовательно, путем подбора параметра с на каждом из трех периодов жизненного цикла можно получить такую теоретическую зависимость л(t), которая достаточно близко совпадет с экспериментальной. В этом случае расчет показателей надежности можно производить на основе теоретической зависимости л(t).

Функция распределения Вейбулла - Гнеденко F(t), показывающая какова вероятность наступления случайного события (отказа) при случайном времени

Функция надежности, обычно обозначаемая как R(t), определяется равенством R(t) = 1 - F(t). Иногда функция R(t) называется функцией выживания, т.к. описывает вероятность того, что отказ произойдет после определенного момента времени t.

На рис. 19. показан вид функций надежности при различных значениях параметра формы с. Если параметр формы распределения с меньше 1, то функция надежности R(t) резко уменьшается в начале времени жизни, затем, с ростом времени t, уменьшение происходит более медленно. Если параметр формы с больше 1, то сначала наблюдается небольшое уменьшение надежности, а затем, начиная с некоторого значения времени t, она снижается довольно быстро.

Рис. 19.

Точка, где все кривые пересекаются, называется характеристическим временем жизни и определяет момент времени, когда отказало 63,2 % выборки: R(t) = 1 - 0,632 = 0,368.

В авиации распределение Вейбулла используется для расчета объектов:

  • - диски двигателя, с ограниченным ресурсом;
  • - модули двигателя и компоненты (с пределом эксплуатации);
  • - элементы планера, подверженные усталостному разрушению;
  • - надежность компонентов.

Распределение описывает все три основных распределения отказов:

  • - отказы приработки;
  • - случайные отказы;
  • - отказы, зависящие от наработки.

Здесь необходима оговорка. Допустим, что по MGS-3 анализу отказ не был отнесен ни к категории 5 (небезопасный), ни к 8 (скрытый, небезопасный), а объект имеет случайное распределение отказов или отказы периода приработки. Тогда мы имеем все основания утверждать, что работы по ТО в данном случае не требуются, более того, объект можно вычеркнуть из списка важных объектов для ТО.

В случае если отказы зависят от наработки, анализ по Вейбуллу поможет определить наиболее подходящий интервал.

По этой причине необходимо очень внимательно подойти к определению зависимости отказов изделий от наработки.

Таки образом, программа ТО B737 может постоянно совершенствоваться на основе аналитических и эмпирических данных, предоставляемых средствами сбора и анализа данных о надежности.

4. Случайные величины и их распределения

Распределения Вейбулла - Гнеденко

Экспоненциальные распределения - частный случай т. н. распределений Вейбулла - Гнеденко. Они названы по фамилиям инженера В. Вейбулла, введшего эти распределения в практику анализа результатов усталостных испытаний, и математика Б.В.Гнеденко (1912-1995), получившего такие распределения в качестве предельных при изучении максимального из результатов испытаний. Пусть Х - случайная величина, характеризующая длительность функционирования изделия, сложной системы, элемента (т.е. ресурс, наработку до предельного состояния и т.п.), длительность функционирования предприятия или жизни живого существа и т.д. Важную роль играет интенсивность отказа

где F (x ) и f (x ) - функция распределения и плотность случайной величины Х .

Опишем типичное поведение интенсивности отказа. Весь интервал времени можно разбить на три периода. На первом из них функция λ(х) имеет высокие значения и явную тенденцию к убыванию (чаще всего она монотонно убывает). Это можно объяснить наличием в рассматриваемой партии единиц продукции с явными и скрытыми дефектами, которые приводят к относительно быстрому выходу из строя этих единиц продукции. Первый период называют "периодом приработки" (или "обкатки"). Именно на него обычно распространяется гарантийный срок.

Затем наступает период нормальной эксплуатации, характеризующийся приблизительно постоянной и сравнительно низкой интенсивностью отказов. Природа отказов в этот период носит внезапный характер (аварии, ошибки эксплуатационных работников и т.п.) и не зависит от длительности эксплуатации единицы продукции.

Наконец, последний период эксплуатации - период старения и износа. Природа отказов в этот период - в необратимых физико-механических и химических изменениях материалов, приводящих к прогрессирующему ухудшению качества единицы продукции и окончательному выходу ее из строя.

Каждому периоду соответствует свой вид функции λ(х) . Рассмотрим класс степенных зависимостей

λ(х) = λ 0 bx b -1 , (12)

где λ 0 > 0 и b > 0 - некоторые числовые параметры. Значения b < 1, b = 0 и b > 1 отвечают виду интенсивности отказов в периоды приработки, нормальной эксплуатации и старения соответственно.

Соотношение (11) при заданной интенсивности отказа λ(х) - дифференциальное уравнение относительно функции F (x ). Из теории дифференциальных уравнений следует, что

(13)

Подставив (12) в (13), получим, что

(14)

Распределение, задаваемое формулой (14) называется распределением Вейбулла - Гнеденко. Поскольку

то из формулы (14) следует, что величина а , задаваемая формулой (15), является масштабным параметром. Иногда вводят и параметр сдвига, т.е. функциями распределения Вейбулла - Гнеденко называют F (x - c ), где F (x ) задается формулой (14) при некоторых λ 0 и b .

Плотность распределения Вейбулла - Гнеденко имеет вид

(16)

где a > 0 - параметр масштаба, b > 0 - параметр формы, с - параметр сдвига. При этом параметр а из формулы (16) связан с параметром λ 0 из формулы (14) соотношением, указанным в формуле (15).

Экспоненциальное распределение - весьма частный случай распределения Вейбулла - Гнеденко, соответствующий значению параметра формы b = 1.

Распределение Вейбулла - Гнеденко применяется также при построении вероятностных моделей ситуаций, в которых поведение объекта определяется "наиболее слабым звеном". Подразумевается аналогия с цепью, сохранность которой определяется тем ее звеном, которое имеет наименьшую прочность. Другими словами, пусть X 1 , X 2 ,…, X n - независимые одинаково распределенные случайные величины,

X(1) = min (X 1 , X 2 ,…, X n ), X(n) = max (X 1 , X 2 ,…, X n ).

В ряде прикладных задач большую роль играют X (1) и X (n ) , в частности, при исследовании максимально возможных значений ("рекордов") тех или иных значений, например, страховых выплат или потерь из-за коммерческих рисков, при изучении пределов упругости и выносливости стали, ряда характеристик надежности и т.п. Показано, что при больших n распределения X (1) и X (n ) , как правило, хорошо описываются распределениями Вейбулла - Гнеденко. Основополагающий вклад в изучение распределений X (1) и X (n ) внес советский математик Б.В.Гнеденко. Использованию полученных результатов в экономике, менеджменте, технике и других областях посвящены труды В. Вейбулла, Э. Гумбеля, В.Б. Невзорова, Э.М. Кудлаева и многих иных специалистов.

Предыдущая

Логарифмически нормальная функция распределения нашла широкое применение при анализе надежности объектов техники, биологии, экономики и др. Например, функцию успешно применяют для описания наработки до отказа подшипников, электронных приборов и других изделий.

Неотрицательные случайные значения некоторого параметра распределены логарифмически нормально, если его логарифм распределен нормально. Плотность распределения для различных значений σ приведена на рис. 4.3.

Рис. 4.3.

Плотность распределения описывается зависимостью

где М х и σ – параметры, оцениваемые по результатам п испытаний до отказа:

(4.4)

Для логарифмически нормального закона распределения функция надежности

(4.5)

Вероятность безотказной работы можно определить по таблицам для нормального распределения (см. табл. П6.1 приложения 6) в зависимости от значения квантиля

Математическое ожидание наработки до отказа

Среднее квадратическое отклонение и коэффициент вариации соответственно будут равны

Если v x 0,3, то полагают, что ν x = σ, при этом ошибка составляет не более 1%.

Часто применяют запись зависимостей для логарифмически нормального закона распределения в десятичных логарифмах. В соответствии с этим законом плотность распределения

Оценки параметров lg x 0 и σ определяют по результатам испытаний:

Математическое ожидание М х, среднее квадратическое отклонение σ x и коэффициент вариации ν x наработки до отказа соответственно равны

Пример 4.6

Определить вероятность безотказной работы редуктора в течение t = 103 ч, если ресурс распределен логарифмически нормально с параметрами lg t 0 = 3,6; σ = 0,3.

Решение

Найдем значение квантиля и определим вероятность безотказной работы:

Ответ: R (t ) = 0,0228.

Распределение Вейбулла

Функция распределения Вейбулла представляет собой двухпараметрическое распределение. Описываемый ею закон является универсальным, так как при соответствующих значениях параметров превращается в нормальное, экспоненциальное и другие виды распределений. Автор данного закона распределения В. Вейбулл использовал его при описании и анализе экспериментально наблюдавшихся разбросов усталостной прочности стали, пределов ее упругости. Закон Вейбулла удовлетворительно описывает наработку до отказа подшипников, элементов электронной аппаратуры, его используют для оценки надежности деталей и узлов машин, в том числе автомобилей, а также для оценки надежности машин в процессе их приработки. Плотность распределения описывается зависимостью

где α – параметр формы кривой распределения; λ – параметр масштаба кривой распределения.

График функции плотности распределения приведен на рис. 4.4.

Рис. 4.4.

Функция распределения Вейбулла

Функция надежности для этого закона распределения

Математическое ожидание случайной величины х равно

где Г(x ) – гамма-функция.

Для непрерывных значений х

Для целочисленных значений х гамма-функцию вычисляют по формуле

также верны формулы

Дисперсия случайной величины равна

Широкое применение при анализе и расчетах надежности изделий закона распределения Вейбулла объясняется тем, что этот закон, обобщая экспоненциальное распределение, содержит дополнительный параметр α.

Подбирая нужным образом параметры а и λ, можно получить лучшее соответствие расчетных значений опытным данным по сравнению с экспоненциальным законом, который является однопараметрическим (параметр λ).

Так, для изделий, у которых имеются скрытые дефекты, но которые длительное время не используются (а значит, медленнее стареют), опасность отказа имеет наибольшее значение в начальный период, а потом быстро падает. Функция надежности для такого изделия хорошо описывается законом Вейбулла с параметром α < 1.

Наоборот, если изделие хорошо контролируется при изготовлении и почти не имеет скрытых дефектов, но подвергается быстрому старению, то функция надежности описывается законом Вейбулла с параметром α > 1. При α = 3,3 распределение Вейбулла близко к нормальному.

Распределения вероятностей случайных величин ; характеризуется функцией распределения

где - параметр формы кривой распределения, - параметр масштаба, - параметр сдвига. Семейство распределений (*) названо по имени В. Вейбулла , впервые использовавшего его для аппроксимации экспериментальных данных о прочности стали на разрыв при усталостпых испытаниях и предложившего методы оценки параметров распределения (*). В. р. принадлежит к асимптотич. распределению третьего типа крайних членов вариационного ряда. Оно широко используется для описания закономерностей отказов шарикоподшипников, вакуумных приборов, элементов электроники. Частными случаями В. р. являются экспоненциальное (р=1) и рэлеевское (р=2) распределения. Кривые функции распределения (*) не принадлежат семейству распределений Пирсона. Имеются вспомогательные таблицы для вычислений функции распределения Вейбулла (см. ). При квантиль уровня qравна


где - гамма-функция; вариации, асимметрия и эксцесс не зависят от , что облегчает их табулирование и создание вспомогательных таблиц для получения оценок параметров. При В. р. унимодально, равна , а функция опасности отказов не убывает. При функция монотонно убывает. Можно построить так. наз. вероятностную бумагу Вейбулла (см. ). На ней трансформируется в прямую, при образ имеет вогнутость, а при - выпуклость. Оценки параметров В. р. по методу квантилей приводят к уравнениям существенно более простым, чем по методу максимального правдоподобия. Совместная асимптотич. эффективность оценок параметров и (при ) по методу квантилей максимальна (и равна 0,64) при. использовании квантилей уровня 0,24 и 0,93. Функция распределения (*) хорошо аппроксимируется функцией распределения логнормального распределения


( - функция распределения нормированного нормального распределения,):


Лит :Weibull W., A statistical theory of the strength of materials, Stockh., 1939; Гнеденко Б. В., Беляев Ю. К., Соловьев А. Д., Математические методы в теории надежности, М., 1965; Jоhnsоn L., The statistical treatment of fatigue experiments, Amst., 1964; Крамер Г Математические методы статистики, пер. с англ., 2 изд., М, 1975. Ю. К. Беляев, Е. В. Чепурин.


Математическая энциклопедия. - М.: Советская энциклопедия . И. М. Виноградов . 1977-1985 .

Смотреть что такое "ВЕЙБУЛЛА РАСПРЕДЕЛЕНИЕ" в других словарях:

    распределение - 3.38 распределение (allocation): Процедура, применяемая при проектировании системы (объекта) и направленная на распределение требований к значениям характеристик объекта по компонентам и подсистемам в соответствии с установленным критерием.… …

    распределение Вейбулла - 1.48. распределение Вейбулла; распределение экстремальных значений типа III Распределение вероятностей непрерывной случайной величины Х с функцией распределения: где х ³ а; y = (x a)/b; а параметры ¥ < a < +¥, k > 0, b > 0. Примечание … Словарь-справочник терминов нормативно-технической документации

    Плотность вероятности Функция распределения Обозначение {{{notation}}} Параметры коэффициент масштаба … Википедия

Лучшие статьи по теме